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The problem

Ex-Alta 1

• Many satellites carry
Langmuir probes.

• Density and temperature are
not measured directly.

• They are inferred from
measured currents vs.
voltages.

Fixed-bias
Langmuir probes

Norsat 1 & 2 Proba-2
Chinese

Seismoelectromagnetic
Satellite
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NASA Data processing levels1

Level Description
L0 Reconstructed, unprocessed instrument and payload data at full resolution, with any and all

communications artifacts (e.g., synchronization frames, communications headers, duplicate data)
removed. (In most cases, NASA’s EOS Data and Operations System [EDOS] provides these data
to the Distributed Active Archive Centers [DAACs] as production data sets for processing
by the Science Data Processing Segment [SDPS] or by one of the Science Investigator-led
Processing System [SIPS] to produce higher-level products.)

L1A Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated
with ancillary information, including radiometric and geometric calibration coefficients
and georeferencing parameters (e.g., platform ephemeris) computed and appended but not
applied to Level 0 data.

L1B Level 1A data that have been processed to sensor units (not all instruments have Level
1B source data).

L2 Derived geophysical variables at the same resolution and location as Level 1 source data.
L3 Variables mapped on uniform space-time grid scales, usually with some completeness and consistency.
L4 Model output or results from analyses of lower-level data (e.g., variables derived from multiple measurements).

1earthdata.nasa.gov/collaborate/open-data-services-and-software/ ...

https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-levels
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Inference models

In practice probe data analyses are based on theories leading to
analytic inference algorithms as, for example, in.

• Orbital motion limited (OML) theory

• Radial motion theory.

These can be applied to

• small spherical probes,

• thin and long cylindrical probes,

• planar probes.

Custom models have also been developed for planar probes,
accounting for

• fringe effects

• Effective collecting cross sections.
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OML current collected by a sphere: V < 0
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OML current collected by a sphere: V > 0

Inet = πa2en
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OML current collected by a thin cylinder: eV > kT

• For an thin, infinitely long probe,

Iattracted ≃ −neeA
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Common assumptions made in OML

• r ≪ λD

• For a cylindrical probe, l ≫ λD

• Stationary electrons

• Either vi ≫ vi th or vi ≪ vi th

• ~B = 0

• No collisions

• Stationary and uniform plasma background

• No nearby objects.

• No photoelectron or secondary electron emission

• Maxwellian background distribution

Problem: Some of these assumptions are not satisfied.
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Radial motion limited2

This model is partly analytic and partly numerical.

• Similar to OML: It makes use of
• conservation of energy mv2/2 + qV , and
• conservation of angular momentum m~r × ~v .

• Particles are affected by Debye shielding however.
⇒ The maximum impact parameter doesn’t necessarily
correspond to grazing particles collected at the back of the
probe.

• Poisson’s equation needs to be solved numerically.
2J.E. Allen, Physica Scripta 45 (1992)
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Planar probes
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Problem: Edge effects increase/decrease the effective collecting
cross section for attracted/repelled species.
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Corrections

• Fringe electric fields
• enhance the effective cross section for attracted species, and
• decrease it for repelled species.

• Analytic and empirical corrections have been reported:
• Johnson, Holmes, Rev. Sci. Instrum. Vol. 61, 2628 (1990);

doi: 10.1063/1.1141849
• Sheridan, J. Phys. D: Applied Physics (2010)



Outline Introduction Beyond analytic Examples Conclusion

Custom model: CHAMP PLP

PLP

(Rother, et al., Radio Sci. Vol. 45, 2010)

• AP = probe surface area

• ASe = satellite effective
electron collection area

• ASi = satellite effective ion
collection area

• V = plate potential with
respect to the satellite

Problems:

• Edge effects increase/decrease the effective collecting cross
section for attracted/repelled species.

• Nearby objects and magnetic field are not accounted for.
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What other options are there?

To be practical, these options must satisfy the following criteria:

• Higher accuracy than analytic expression. More physical
processes and general conditions under which measurements
are made, must be accounted for.

• Speed: Improved inference techniques must be implemented
in fast algorithms, capable of producing n, T , and more,
quickly, with modest computing resources.
This rules out multi-physics 3D simulations, which would not
be tractable in real time.
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Solution

• Construct solution libraries consisting of measurements, with
corresponding known plasma parameters.

• Such libraries could constructed experimentally if accurate
inferences of experimental data were available.

• Synthetic data could also be made with simulations
accounting for more physical processes and more realistic
geometry than possible in theoretical models.

• Use these libraries to train and validate inference models.

• Two possibilities:
• empirical analytic,
• regression-based.
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Example 1 - Swarm front plate as a PLP3

• When ion imagers are not in use, use the front plate as a PLP.

• Bias to V = −3.5 V, and measure the current.

Aeff = Ageo (1 + δmodel)

• Aeff = Ageo → nvram much too large.

• Ad hoc relative increases of Aeff by 8%, 12%,
17% → 11%, 9%, 14% errors

• Simulations and trained empirical model → < 2% error.

3
Resendiz Lira, et al., IEEE Trans. Plasma Sci., DOI: 10.1109/TPS.2019.2915216
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Regression

Interpolate physical plasma parameters (ne , Te , ,VS , ...) in a
multivariate space of physical measurements (Ii ).

• Deep learning neural
network.
(Chalaturnyk, Marchand,
Frontiers Phys. 2019)

• Radial basis functions.
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∑
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)

.

(X, Y)

(X1, Y1)

(X2, Y2)

(X3, Y3)

(X4, Y4)
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Two inference models

• Model 1: OML-like analytic, corrected with with multivariate
regression.

• Model 2: Direct regression, no analytic bias.

In each case:

• Construct a data set with 4-tuples of currents and
corresponding plasma parameters (ne , Te , Vf , ...)

• Use regression to construct an inference model for selected
parameters.

• Train with a subset of our solution library.

• Validate with the remaining subset.
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Example data set

For given bias voltages Vb = 2, 3, 4, 5 V:

I1 I2 I3 I4 ne Te

-9.299e-07 -1.419e-06 -1.861e-06 -2.286e-06 2.514e+11 0.0563
-3.683e-09 -2.719e-07 -4.907e-07 -6.888e-07 8.146e+10 0.0541
-4.914e-07 -1.152e-06 -1.699e-06 -2.179e-06 2.872e+11 0.0554
-3.541e-08 -3.405e-07 -5.647e-07 -7.709e-07 8.271e+10 0.0929
-8.884e-08 -3.369e-07 -5.398e-07 -7.238e-07 7.564e+10 0.0518
-2.872e-07 -5.492e-07 -7.8107e-7 -1.009e-06 9.592e+10 0.0500
-1.52e-09 -3.223e-07 -6.253e-07 -8.944e-07 1.200e+11 0.0562
-9.599e-09 -5.003e-08 -8.305e-08 -1.139e-07 1.067e+10 0.0547
...
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Radial basis function (RBF)

Given a data set, we need to choose

• the interpolating function G ,

• the number and positions of pivots in ~X
space,

• the coefficients ai have to be determined.

For G , we can think of two possibilities:

• G (0) 6= 0 and G (x) decreases
monotonically for x > 0.
→ “near neighbours” interpolation.

• G (0) = 0 and G (x) increases with x > 0.
→ “all neighbours” interpolation (as in
kriging).

(X, Y)

(X1, Y1)

(X2, Y2)

(X3, Y3)

(X4, Y4)
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Training and validation

• Subdivide the full data set in two disjoint sets:
• a training set, and
• a validation set.

• Construct a model on the training set.

• Apply the model to the validation set

• In both cases, assess the model skill with a “loss” or “cost”
function, which is

• positive definite,
• equal to 0 if model predictions are exact, and
• increase as discrepancies between predictions and data

increase.

• Avoid overfitting at training, which would lead to a loss of
inference skill on the validation set.
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Pivots and interpolation coefficients ai

For a given number N of nodes in in a training set, two possible
strategies are possible to select N pivots:

• Distribute pivots following the distribution of nodes in ~X
space.

• Try all combinations N-choose-N , and select the one which
produces the best model over the entire set.

Coefficients ai are determined by

• imposing collocation at pivots:

Yi =
N
∑

j=1

aiG (|~Xi − ~Xj |), i = 1,N

When the best distribution of pivots is found (the cost function is
smallest), collocation is relaxed to further improve the model skill.
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Simple fit of sin(x)
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Combined analytic and regression

• There is an approximate analytic relation between currents Ii
and plasma parameters.

• Use the analytic expression to infer approximate values of
some of the parameters.

• Use regression to correct these estimates.

CAVEAT
In order to do this, we need known, accurate values of the

parameters in order to determine errors in analytic inferences, and
correct them with regression.
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Example 2 - fixed-bias spherical probes4
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4
Olowookere, Marchand, IEEE Trans. Plasma Sci. DOI: 10.1109/TPS.2020.3045366
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Experimental validation

plasma
(V = 0)

satellite
V=Vf

Vb1

Vb2

Vb1

Vb2

V1

V2

Vf1

Vf2

• Use two instruments biased to
different and variable voltages V1

and V2.

• Verify whether

Vf 1 − V1 = Vf 2 − V2.
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Example 3 - fixed-bias needle probes5

Assuming the empirical relation for the absolute value of the
electron current collected by a finite length probe:
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5Guthrie, Marchand, Marholm, Meas. Sci. Technol., in press
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Fixed-bias needle probes

• With 3 or more probes, β is determined from
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• Given β, we can determine Vf + TeV .

• Lastly, we can solve for ne/T
β−1/2
eV from

I ≃ ne

T
β−1/2
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A

√

e3
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Construction of a model

Goal: Train more accurate model to infer plasma parameters from
measured currents.
We need:

• A data set consisting of known plasma parameters (Level L2)
to be inferred and corresponding low level L1B data
(currents).

• A model which, given L1B data as input, will produce L2 data
as output.

• A training and validation strategy.
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How to construct a data base?

• Accurate experimental measurements would be ideal, but
those are difficult to obtain.

• Synthetic data calculated with relevant physics, under
representative conditions are good alternative.

• Apply 3D kinetic simulations to determine instrument (probe)
responses in different assumed, and representative space
environment conditions.

• Construct data sets, and train inference models using
multivariate regression techniques.
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Solar Orbiter
(Grey, et al., IEEE Trans. Plasma Sci., 2017)
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Method 1: OML-like
(Guthrie, et al., in press)

Assuming OML-like characteristics,
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Vf , Te , and ne

• With 3 probes at different voltages, β is the solution to:
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• Given β, estimate Vf with

Vf ≃ Vb2I
1/β
1 − Vb1I

1/β
2

I
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2 − I

1/β
1

−Te(eV ).

• Correct with RBF. The correction is an estimate of −Te(eV ).

• Use Eq. 1 to estimate ne and correct with RBF.
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ne : OML-like & RBF-corrected
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Method 2: Direct RBF
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From PIC-simulated data set.
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Langmuir model, 5 pivots
(Marholm 2019).
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Application to Visions-2 data

altitude

ne Jacobsen

ne �=0.8

Langmuir

trained

Langmuir

trained
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Summary and conclusion

• After ∼ 100 years of research, measuring plasma parameters
(density, temperature, potential, etc.), remains challenging.

• Plasma parameters are not measured directly. They are
inferred from indirect L1B measurements.

• The inference of Langmuir probe measurements is essentially
made with analytic expressions obtained from theories.

• They often provide good estimates.
• They are fast, and relatively simple.

• Approximations made in theories are generally not all satisfied.

• Direct computer simulations are not practical.

• A viable option is to:
• Construct a solution library consisting of L1B data + plasma

parameters.
• Use these libraries to train and validate models to solve the

inference problem.

Prospective: A change of paradigm?
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