▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Inference of particle sensor measurements: Beyond analytic models

Richard Marchand University of Alberta, Edmonton, Canada

April 13, 2021

0		1	ï		2			
U	u	ι	l	l	I	1	e	

Introduction

Beyond analytic

Example

Conclusion

Outline

Introduction

Beyond analytic

Examples

Summary and Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Introduction

Beyond analytic

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Thanks to:

Joshua Gutrhie Guangdong Liu Sigvald Marholm Akinola Olowookere Pedro Alberto Resendiz Lira

Introduction

Beyond analytic

Example

Conclusion

The problem

- Many satellites carry Langmuir probes.
- Density and temperature are not measured directly.
- They are inferred from measured currents vs. voltages.

Fixed-bias Langmuir probes

Ex-Alta 1

Proba-2

Chinese Seismoelectromagnetic

NASA Data processing levels¹

Level	Description
L0	Reconstructed, unprocessed instrument and payload data at full resolution, with any and all
	communications artifacts (e.g., synchronization frames, communications headers, duplicate data)
	removed. (In most cases, NASA's EOS Data and Operations System [EDOS] provides these data
	to the Distributed Active Archive Centers [DAACs] as production data sets for processing
	by the Science Data Processing Segment [SDPS] or by one of the Science Investigator-led
	Processing System [SIPS] to produce higher-level products.)
L1A	Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated
	with ancillary information, including radiometric and geometric calibration coefficients
	and georeferencing parameters (e.g., platform ephemeris) computed and appended but not
	applied to Level 0 data.
L1B	Level 1A data that have been processed to sensor units (not all instruments have Level
	1B source data).
L2	Derived geophysical variables at the same resolution and location as Level 1 source data.
L3	Variables mapped on uniform space-time grid scales, usually with some completeness and consistency.
L4	Model output or results from analyses of lower-level data (e.g., variables derived from multiple measurements).

Inference models

In practice probe data analyses are based on theories leading to analytic inference algorithms as, for example, in.

- Orbital motion limited (OML) theory
- Radial motion theory.

These can be applied to

- small spherical probes,
- thin and long cylindrical probes,
- planar probes.

Custom models have also been developed for planar probes, accounting for

- fringe effects
- Effective collecting cross sections.

OML current collected by a sphere: V < 0

$$I_{net} = \pi a^2 en \sqrt{\frac{2kT_i}{\pi m_i}} \left[e^{-x_{id}^2} + (1 + 2x_{id}^2 - x_{im}) \frac{\sqrt{\pi} \operatorname{erf}(x_{id})}{2} \right] - \pi a^2 en \sqrt{\frac{2kT_e}{\pi m_e}} \left\{ \frac{x_{ed} + x_{em}}{2x_{ed}} e^{-(x_{ed} - x_{em})^2} + \frac{x_{ed} - x_{em}}{2x_{ed}} e^{-(x_{ed} + x_{em})^2} + \left[\frac{1}{2} + x_{ed}^2 + x_{em} \right] \frac{\sqrt{\pi} \operatorname{erf}(x_{ed} - x_{em}) + \operatorname{erf}(x_{ed} + x_{em})}{x_{ed}} \right\}$$

For a given species $\begin{aligned} x_{\alpha d} &= \frac{v_{\alpha d}}{\sqrt{2kT_{\alpha}/m_{\alpha}}} \\ x_{\alpha m} &= q_{\alpha}V/kT_{\alpha} \end{aligned} \qquad I_{net} \simeq nea^{2}\sqrt{\frac{8\pi kT_{i}}{m_{i}}\left(1-\frac{eV}{kT_{i}}\right)} \text{ if } v_{id} = 0 \\ I_{net} \simeq \pi nea^{2}v_{id}\left(1-\frac{eV}{mv_{id}^{2}/2}\right) \text{ if } v_{id} \gg v_{ith} \end{aligned}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

OML current collected by a sphere: V > 0

$$I_{net} = \pi a^2 en \sqrt{\frac{2kT_i}{\pi m_i}} \left\{ \frac{x_{id} + x_{im}}{2x_{id}} e^{-(x_{id} - x_{im})^2} + \frac{x_{id} - x_{im}}{2x_{id}} e^{-(x_{id} + x_{im})^2} \right. \\ \left. + \left[\frac{1}{2} + x_{id}^2 - x_{im} \right] \frac{\sqrt{\pi}}{2} \frac{\operatorname{erf}(x_{id} - x_{im}) + \operatorname{erf}(x_{id} + x_{im})}{x_{id}} \right] \\ \left. - \pi a^2 en \sqrt{\frac{2kT_e}{\pi m_e}} \left[e^{-x_{ed}^2} + \left(1 + 2x_{ed}^2 + 2x_{em}\right) \frac{\sqrt{\pi}}{2} \frac{\operatorname{erf}(x_{ed})}{x_{ed}} \right] \right]$$

If $v_{ed} \simeq$ 0, and $eV > kT_e$,

$$I \simeq nea^2 \sqrt{rac{8\pi kT_e}{m_i}} \left(1 + rac{eV}{kT_e}
ight)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < ⊙

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

OML current collected by a thin cylinder: eV > kT

• For an thin, infinitely long probe,

$$\begin{split} I_{attracted} &\simeq -n_e e A \frac{2}{\sqrt{\pi}} \sqrt{\frac{kT_e}{2\pi m_e}} \sqrt{1 + \frac{e(V_f + V_b)}{kT_e}}, \\ &\Rightarrow n_e = \sqrt{\frac{\pi m_e (\Delta I^2 / \Delta V_b)}{2e^3 A^2}}. \end{split}$$

(Jacobsen, Measurement Science and Technology, 2010)For a finite length cylinder however,

$$I_{attracted} \simeq -n_e e A \sqrt{\frac{kT_e}{2\pi m_e}} \left(1 + \frac{e(V_f + V_b)}{kT_e}\right)^{eta},$$

with

 $0.5 \lesssim eta \lesssim 1.$

Common assumptions made in OML

- $r \ll \lambda_D$
- For a cylindrical probe, $I \gg \lambda_D$
- Stationary electrons
- Either $v_i \gg v_{i th}$ or $v_i \ll v_{i th}$
- $\vec{B} = 0$
- No collisions
- Stationary and uniform plasma background
- No nearby objects.
- No photoelectron or secondary electron emission
- Maxwellian background distribution

Problem: Some of these assumptions are not satisfied.

Radial motion limited²

This model is partly analytic and partly numerical.

- Similar to OML: It makes use of
 - conservation of energy $mv^2/2 + qV$, and
 - conservation of angular momentum $m\vec{r} \times \vec{v}$.
- Particles are affected by Debye shielding however.
 - \Rightarrow The maximum impact parameter doesn't necessarily correspond to grazing particles collected at the back of the probe.
- Poisson's equation needs to be solved numerically.

²J.E. Allen, Physica Scripta 45 (1992)

Beyond analytic

Planar probes

$$J = en \sqrt{\frac{2kT}{\pi m_i}} \left[\frac{1}{2} e^{-x_{id}^2} + \frac{\sqrt{\pi}}{2} x_{id} \left(1 + \operatorname{erf}(x_{id}) \right) \right] - en \sqrt{\frac{2kT}{\pi m_e}} \left[\frac{1}{2} e^{-(x_{ed} - x_{em})^2} + \frac{\sqrt{\pi}}{2} x_{ed} \left(1 + \operatorname{erf}(x_{ed} - x_{em}) \right) \right]$$

 $\ \ \text{if} \ V < \text{0, and} \\$

$$J = en \sqrt{\frac{2kT}{\pi m_i}} \left[\frac{1}{2} e^{-(x_{id} - x_{im})^2} + \frac{\sqrt{\pi}}{2} x_{id} \left(1 + \operatorname{erf}(x_{id} - x_{im}) \right) \right] - en \sqrt{\frac{2kT}{\pi m_e}} \left[\frac{1}{2} e^{-x_{ed}^2} + \frac{\sqrt{\pi}}{2} x_{ed} \left(1 + \operatorname{erf}(x_{ed}) \right) \right]$$

if V > 0.

Problem: Edge effects increase/decrease the effective collecting cross section for attracted/repelled species. a = b + a = b

Beyond analytic

Example

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Corrections

- Fringe electric fields
 - enhance the effective cross section for attracted species, and
 - decrease it for repelled species.
- Analytic and empirical corrections have been reported:
 - Johnson, Holmes, Rev. Sci. Instrum. Vol. 61, 2628 (1990); doi: 10.1063/1.1141849
 - Sheridan, J. Phys. D: Applied Physics (2010)

Custom model: CHAMP PLP

$$I_P = -en_e v_{\text{orbit}} A_P \left[\frac{\frac{A_P}{A_{\text{Se}}} + \frac{A_{\text{Si}}}{A_{\text{Se}}}}{\frac{A_P}{A_{\text{Se}}} + e^{-\frac{eV}{kT_e}}} - 1 \right]$$

(Rother, et al., Radio Sci. Vol. 45, 2010)

Problems:

- Edge effects increase/decrease the effective collecting cross section for attracted/repelled species.
- Nearby objects and magnetic field are not accounted for.

- A_P = probe surface area
- A_{Se} = satellite effective electron collection area
- A_{Si} = satellite effective ion collection area
- V = plate potential with respect to the satellite

What other options are there?

To be practical, these options must satisfy the following criteria:

- Higher accuracy than analytic expression. More physical processes and general conditions under which measurements are made, must be accounted for.
- Speed: Improved inference techniques must be implemented in fast algorithms, capable of producing *n*, *T*, and more, quickly, with modest computing resources. This rules out multi-physics 3D simulations, which would not be tractable in real time.

Introduction	

Beyond analytic

Example

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Solution

- Construct *solution libraries* consisting of measurements, with corresponding known plasma parameters.
- Such libraries could constructed experimentally if accurate inferences of experimental data were available.
- Synthetic data could also be made with simulations accounting for more physical processes and more realistic geometry than possible in theoretical models.
- Use these libraries to train and validate inference models.
- Two possibilities:
 - empirical analytic,
 - regression-based.

Example 1 - Swarm front plate as a PLP³

- When ion imagers are not in use, use the front plate as a PLP.
- Bias to V = -3.5 V, and measure the current.

$$\begin{aligned} \mathcal{A}_{eff} &= \mathcal{A}_{geo} \left(1 + \delta_{model} \right) \\ \delta_{\text{model}} &= \frac{\alpha P \lambda_{\text{D}}}{A_{geo}} \left(1 - \frac{eV}{\frac{1}{2}m_{\text{eff}} \nu_{\perp}^{2}} - \beta \frac{eV}{kT_{\text{e}}} - \frac{\gamma}{eV} \frac{e^{2}}{4\pi\epsilon_{0}\lambda_{\text{D}}} \right) \end{aligned}$$

• $A_{eff} = A_{geo} \rightarrow nv_{ram}$ much too large.

- Ad hoc relative increases of A_{eff} by 8%, 12%, 17% \rightarrow 11%, 9%, 14% errors
- Simulations and trained empirical model $\rightarrow~<2\%$ error.

³Resendiz Lira, et al., IEEE Trans. Plasma Sci., DOI: 10.1109/TPS.2019.2915216∋ → < = → < = → = → ○ < ↔

Beyond analytic

Regression

Interpolate physical plasma parameters $(n_e, T_e, V_S, ...)$ in a multivariate space of physical measurements (I_i) .

 Deep learning neural network. (Chalaturnyk, Marchand, Frontiers Phys. 2019)

• Radial basis functions.

$$egin{array}{rcl} ec{Y} &\simeq& \sum_{i=1}^N a_i G\left(|ec{X}-ec{X}_i|
ight) \ ec{Y}_j &=& \sum_{i=1}^N a_i G\left(|ec{X}_j-ec{X}_i|
ight). \end{array}$$

SAC

Two inference models

- Model 1: OML-like analytic, corrected with with multivariate regression.
- Model 2: Direct regression, no analytic bias.

In each case:

- Construct a data set with 4-tuples of currents and corresponding plasma parameters (n_e, T_e, V_f, ...)
- Use regression to construct an inference model for selected parameters.
- Train with a subset of our solution library.
- Validate with the remaining subset.

. . .

Beyond analytic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

Example data set

For given bias voltages $V_b = 2, 3, 4, 5$ V:

I_1	I_2	<i>I</i> ₃	<i>I</i> ₄	n _e	T_e
-9.299e-07	-1.419e-06	-1.861e-06	-2.286e-06	2.514e+11	0.0563
-3.683e-09	-2.719e-07	-4.907e-07	-6.888e-07	8.146e+10	0.0541
-4.914e-07	-1.152e-06	-1.699e-06	-2.179e-06	2.872e+11	0.0554
-3.541e-08	-3.405e-07	-5.647e-07	-7.709e-07	8.271e+10	0.0929
-8.884e-08	-3.369e-07	-5.398e-07	-7.238e-07	7.564e+10	0.0518
-2.872e-07	-5.492e-07	-7.8107e-7	-1.009e-06	9.592e+10	0.0500
-1.52e-09	-3.223e-07	-6.253e-07	-8.944e-07	1.200e+11	0.0562
-9.599e-09	-5.003e-08	-8.305e-08	-1.139e-07	1.067e+10	0.0547

Beyond analytic

Radial basis function (RBF)

Given a data set, we need to choose

- the interpolating function G,
- the number and positions of pivots in \vec{X} space,
- the coefficients a_i have to be determined.

For G, we can think of two possibilities:

 G(0) ≠ 0 and G(x) decreases monotonically for x > 0.

 \rightarrow "near neighbours" interpolation.

G(0) = 0 and G(x) increases with x > 0.
 → "all neighbours" interpolation (as in kriging).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Training and validation

- Subdivide the full data set in two disjoint sets:
 - a training set, and
 - a validation set.
- Construct a model on the training set.
- Apply the model to the validation set
- In both cases, assess the model skill with a "loss" or "cost" function, which is
 - positive definite,
 - equal to 0 if model predictions are exact, and
 - increase as discrepancies between predictions and data increase.
- Avoid overfitting at training, which would lead to a loss of inference skill on the validation set.

Pivots and interpolation coefficients a_i

For a given number N of nodes in in a training set, two possible strategies are possible to select N pivots:

- Distribute pivots following the distribution of nodes in \vec{X} space.
- Try all combinations *N*-choose-*N*, and select the one which produces the best model over the entire set.

Coefficients a_i are determined by

• imposing collocation at pivots:

$$Y_i = \sum_{j=1}^{N} a_i G(|\vec{X}_i - \vec{X}_j|), \ \ i = 1, N$$

When the best distribution of pivots is found (the cost function is smallest), collocation is relaxed to further improve the model skill.

Conclusion

Simple fit of sin(x)

Combined analytic and regression

- There is an approximate analytic relation between currents I_i and plasma parameters.
- Use the analytic expression to infer approximate values of some of the parameters.
- Use regression to correct these estimates.

CAVEAT

In order to do this, we need known, accurate values of the parameters in order to determine errors in analytic inferences, and correct them with regression.

Example 2 - fixed-bias spherical probes⁴

Beyond analytic

Example

Conclusion

Experimental validation

- Use two instruments biased to *different* and *variable* voltages V₁ and V₂.
- Verify whether

$$V_{f1} - V_1 = V_{f2} - V_2.$$

<ロ> (四) (四) (三) (三) (三) (三)

Example 3 - fixed-bias needle probes⁵

Assuming the empirical relation for the absolute value of the electron current collected by a finite length probe:

$$I \simeq n_e e A \sqrt{\frac{kT_e}{2\pi m_e}} \left(1 + \frac{e(V_f + V_b)}{kT_e}\right)^{\beta},$$

we can do the same as with fixed spherical probes and write

$$I^{1/\beta} \simeq \left(n_e e A \sqrt{\frac{k}{2\pi m_e}}\right)^{1/\beta} \frac{1}{(kT_e)^{1-1/(2\beta)}} \left(\frac{kT_e}{e} + V_f + V_b\right).$$

Given two probes biased to different voltages V_{b1} and V_{b2} ,

$$V_f + T_{eV} = \frac{V_{b1} I_2^{1/\beta} - V_{b2} I_1^{1/\beta}}{I_1^{1/\beta} - I_2^{1/\beta}}$$

⁵Guthrie, Marchand, Marholm, Meas. Sci. Technol. p in press e = 1000 e = 1000

Fixed-bias needle probes

• With 3 or more probes, β is determined from

$$\frac{V_{b1}I_2^{1/\beta} - V_{b2}I_1^{1/\beta}}{I_1^{1/\beta} - I_2^{1/\beta}} - \frac{V_{b3}I_2^{2/\beta} - V_{b2}I_3^{1/\beta}}{I_3^{1/\beta} - I_2^{1/\beta}} = 0.$$

- Given β , we can determine $V_f + T_{eV}$.
- Lastly, we can solve for $n_e/T_{eV}^{eta-1/2}$ from

$$I \simeq \frac{n_e}{T_{eV}^{\beta-1/2}} A \sqrt{\frac{e^3}{2\pi m_e}} \left(T_{eV} + V_f + V_b \right)^{\beta}.$$

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Construction of a model

Goal: Train more accurate model to infer plasma parameters from measured currents.

We need:

- A data set consisting of known plasma parameters (Level L2) to be inferred and corresponding low level L1B data (currents).
- A model which, given L1B data as input, will produce L2 data as output.
- A training and validation strategy.

How to construct a data base?

- Accurate experimental measurements would be ideal, but those are difficult to obtain.
- Synthetic data calculated with relevant physics, under representative conditions are good alternative.
- Apply 3D kinetic simulations to determine instrument (probe) responses in different assumed, and representative space environment conditions.
- Construct data sets, and train inference models using multivariate regression techniques.

Introduction

Beyond analytic

Examples

Conclusion

Solar Orbiter

(Grey, et al., IEEE Trans. Plasma Sci., 2017)

Early design of Solar Orbiter

Simulations made with PTetra

Effective collected current density without (above) and with (below) multiple reflections.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Beyond analytic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Method 1: OML-like (Guthrie, et al., in press)

Assuming OML-like characteristics,

$$I = -n_e e A \frac{2}{\sqrt{\pi}} \sqrt{\frac{kT_e}{2\pi m_e}} \left(1 + \frac{e(V_f + V_b)}{kT_e} \right)^{\beta},$$
$$I^{1/\beta} = \left[\left(n_e e A \frac{2}{\sqrt{\pi}} \sqrt{\frac{kT_e}{2\pi m_e}} \right)^{1/\beta} \frac{e}{kT_e} \right] \left(V_f + \frac{kT_e}{e} + V_b \right) \right).$$

Solve for $V_f + kT_e/e$, given I_1 , I_2 , V_{b1} , V_{b2} :

$$V_{f} + \frac{kT_{e}}{e} = \frac{V_{b2}I_{1}^{1/\beta} - V_{b1}I_{2}^{1/\beta}}{I_{2}^{1/\beta} - I_{1}^{1/\beta}} = \frac{V_{b3}I_{2}^{1/\beta} - V_{b2}I_{3}^{1/\beta}}{I_{3}^{1/\beta} - I_{2}^{1/\beta}}.$$

Introduction

Beyond analytic

Examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

 V_f , T_e , and n_e

• With 3 probes at different voltages, β is the solution to:

$$\frac{V_{b2}I_1^{1/\beta} - V_{b1}I_2^{1/\beta}}{I_2^{1/\beta} - I_1^{1/\beta}} - \frac{V_{b3}I_2^{1/\beta} - V_{b2}I_3^{1/\beta}}{I_3^{1/\beta} - I_2^{1/\beta}} = 0,$$

• Given β , estimate V_f with

$$V_f \simeq rac{V_{b2}I_1^{1/eta} - V_{b1}I_2^{1/eta}}{I_2^{1/eta} - I_1^{1/eta}} - T_e(eV).$$

- Correct with RBF. The correction is an estimate of $-T_e(eV)$.
- Use Eq. 1 to estimate n_e and correct with RBF.

n_e : OML-like & RBF-corrected

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Beyond analytic

Method 2: Direct RBF

Langmuir model, 5 pivots (Marholm 2019).

(日)、

э

Application to Visions-2 data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Summary and conclusion

- After \sim 100 years of research, measuring plasma parameters (density, temperature, potential, etc.), remains challenging.
- Plasma parameters are not measured directly. They are inferred from indirect L1B measurements.
- The inference of Langmuir probe measurements is essentially made with analytic expressions obtained from theories.
 - They often provide good estimates.
 - They are fast, and relatively simple.
- Approximations made in theories are generally not all satisfied.
- Direct computer simulations are not practical.
- A viable option is to:
 - Construct a solution library consisting of L1B data + plasma parameters.
 - Use these libraries to train and validate models to solve the inference problem.

Prospective: A change of paradigm?