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Problem and objective
● Plasma dynamics is a complicated many-body 

problem.
● It can be modelled with fluid equations, kinetically, or 

with a combination of the two.
● Interaction of satellites and mounted instruments 

with plasma environment is determined by kinetic 
processes in non equilibrium perturbed plasma.



  

Fluid description

Based on conservation equations,
– Mass conservation → continuity equation
– Momentum conservation → momentum equation
– Energy equation → energy equation

and moments of kinetic equations



  

Advantages
● Simplicity
● Applicable to large scales (entire solar system)
● Robust, because of conservation laws



  

Limiatations
● Reliance on an assumed approximate particle 

distribution function; e.g., Maxwellian.
● Breaks down when deviations from the assumed 

distribution is important.
● Incompleteness. The set of equations requires ad 

hoc closure. This is related to the BBGKY hierarchy. 



  

Kinetic approaches
Imitate nature

● Particle-particle interactions
– Straightforward and easy to implement.
– With N particles: N(N-1)/2 interactions and N trajectory 

integrations every time step.

● Particle-cluster interaction
– PP interaction between nearby particles,
– PC interaction with “distant” clusters
– Less straightforward to implement.

● Particle-mesh interaction
– Interpolate particles on a mesh to get charge and current 

densities
– Solve Maxwell equations
– Interpolate fields from the mesh back to the particles
– Integrate particle trajectories for one time step, and repeat.

● Hybrid simulations

– Some species are approximated as a fluids, and 
others kinetically.

● Vlasov approach

– Solve the Vlasov equation in 6-dimensional space.

– Similar to the fluid approach, but in phase space.

(“Computer simulation using particles”, Hockney and Eastwood)



  

Hybrid approach
● Certain species (often electrons) are described 

with fluid equations.
● Others (ions) are treated kinetically.



  

Particle In Cell



  

The particle in cell approach
illustration in 1D

y=0

y=1

Distribution of a point charge on a grid

Solution: Fast Fourier Transform, finite difference, …
Boundary conditions: periodic, reflecting absorbing/emitting, ...



  

Mesh

● Meshes can be
– 1, 2, and 3D
– Structured / unstructured
– Unstructured etrahedral adaptive in PTetra

● Boundary conditions,
– Dirichlet (used in PTetra for all boundaries).
– Newmann
– Mixed



  

Boundary conditions in PTetra
● Dirichlet boundary conditions are set as seen in the satellite reference frame.

● V = (vxB).r at the boundary, from the motional electric field E = -vxB

● “absolute” or self-consistent

– Absolute: independent of plasma conditions.

                Every physical structure is assigned a potential.

– Self-consistent: relative potentials are specified between different     
                         elements.

                         different disjoint sets of elements can be considered



  

Networks with relative biases

Alternatively, potentials can be fixed a priori, relative to the background plasma.



  

Special features



  

Unphysical features
● Self force

– General boundary conditions 
produce nonphysical self-forces.

● Mirror force
– Appears at boundaries.

● These are negligible with large 
numbers of particles per cell.

+-

V=0
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Self- and mirror force removal

Electron gravitation around a fixed proton at the centre of 
a a spherical simulation domain without (left) and with 
(right) SF subtraction.

(Resendiz and Marchand,  Computer Physics 
Communications 254 (2020) 107212)



  

Mesh and the topo file



  

Structure of the topo file
● Generate a mesh with gmsh → filename.msh.
● Convert the msh file to “topo” format with msh2topo → msh2topo.out
● Rename msh2topo.out to something more convenient, such as 

mygeometry01.topo
● The topo file contains

– Vertices used to define the mesh
– 4 Indices of vertices forming each tetron + the indice of the 4 neighbouring 

tetrahedra opposite each of the 4 vertices



  

Inside topo
 $coord
 ncoord=      293984  
       1   0.0000000000000000E+00   5.7499999999999996E-01   2.5000000000000001E-02
       2   0.0000000000000000E+00  -5.7499999999999996E-01   2.5000000000000001E-02
       3   0.0000000000000000E+00   6.9169999999999995E-02   7.8920999999999997E-01
       4   0.0000000000000000E+00  -6.9169999999999995E-02   7.8920999999999997E-01
       …
 

 $elements    nodes (1-4) and adjacency (1-4)
 nelem=     1664501 
        1    42859   192516   139632   222048    45316     2290   769089    87995   
        2    69416   109371   109955   182807    77273   258049     8832     1559    
        3    62254    99707   124127   144835    13117   148202   238368   125905  
        4    69747    89573   118673   147577    46264   465323    75943     2599
      …
     1062     7595     9970   117807   267393    23061    32582      789   420655
     1063    52897       97     1157   130068   480618   174510     3062       -9
     1064    39318   142508   122745   175421   340709   642754    86591     4154
     1065    27243    30485    27245    94959   129731  1600927     5170       -1
     ...



  

topo file convention
● When a tetrahedron face is on a physical 

structure (numbered with an integer index in 
gmsh), the “neighbour” opposite the vertex 
opposite that face is the negative of that index.

● From the first vertex listed in a tetrahedron, 
vertices 2, 3, 4 rotate clockwise.



  

Finding a point in the mesh



  

Selected examples



  

3D – mesh
● Unstructured tetrahedral 

mesh.
● Used to represent objects 

in realistic geometry.
● Spatial resolution can be 

used to represent curved 
or small components 

Simulation of an early Solar Orbiter geometry
Grey, et al. IEEE Trans. Plasma Sci. 45 (2017)



  

Photo-electron emission from 
multiple reflections

“Multiple reflections of solar radiation and photoelectron emission in satellite 
interaction with space environment”, R. Omar, MSc thesis 2016, 

https://doi.org/10.7939/R3PZ51S0B



  

Application to Solar Orbiter
Grey, et al. IEEE Trans. Plasma Sci. 45 (2017)



  

The swarm satellite



  

Simplified Swarm geometry



  

Post processing
● Relaxation
● Visualisation
● Test-particle simulations

– Used to compute particle distribution functions f
– Moments of f are calculated numerically

● Density, fluxes, energy density, pressure, heat flux, ...



  

Test-partice simulation

● For a collisionless plasma, 
Df/Dt = 0 along particle 
trajectories in 6D phase 
space

● This is the 1-particle 
equivalent to Louisville's 
theorem



  

Application to probes

Collected electron current density along a positive 
cylindrical probe (left), and electron velocity 
distribution function near the ends and in the middle 
of the probe (right)



  

Some other codes
● NASCAP-2K: US, proprietary, not widely available, 

different meshes and comprehensive physics.
● MUSCAT: Japan, proprietary, available at a cost.
● EMSES, Japan, proprietary, structured Cartesian mesh
● SPIS: Europe (ESA sponsored), tetrahedral 

unstructured meshes, freely available, comprehensive 
physics packages, written in Java.
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