Mesh generation with Gmsh

Dr. Sayan Adhikari

Department of Physics, University of Oslo, Norway

PTetra Workshop, January 25, 2022

▶ Workshop URL

Contents

Introduction to Gmsh

- 2 Basic elements of Gmsh
- 3 Setting up a geometry for PTetra
- 4 Mesh generation for PTetra

э

Introduction to Gmsh

Gmsh is

- an open source 3D finite element mesh generator
- a CAD engine Example
- a post-processing tool Example
- available for different distributions (e.g. Windows, Linux, MacOS)

э

3/23

Introduction to Gmsh

Gmsh is

- an open source 3D finite element mesh generator
- a CAD engine Example
- a post-processing tool Example
- available for different distributions (e.g. Windows, Linux, MacOS)

Its design goal is to provide a fast, light and user-friendly meshing tool with parametric input and advanced visualization capabilities.

3/23

Gmsh can be used

- through a GUI
- using a command line through Gmsh's own scripting language

э

Gmsh can be used

- through a GUI
- using a command line through Gmsh's own scripting language

In today's session, we shall learn a method with a combination of both.

Dr. Sayan Adhil	kari (UiO	
-----------------	-----------	--

◆ ● ◆ ● ◆ ■ ◆ ■ ◆
 PTetra Workshop

4/23

The geometry of any given problem is represented via a file "<filename>.geo". Such files can be created:

- using a text editor like vim.
- through the GUI

The geometry of any given problem is represented via a file "<filename>.geo". Such files can be created:

- using a text editor like vim.
- through the GUI

To open the Gmsh GUI

#> gmsh

The geometry of any given problem is represented via a file "<filename>.geo". Such files can be created:

- using a text editor like vim.
- through the GUI

To open the Gmsh GUI

#> gmsh

To open a .geo file using the Gmsh GUI

#> gmsh <filename>.geo

5/23

・ 同 ト ・ ヨ ト ・ ヨ ト

The geometry of any given problem is represented via a file "<filename>.geo". Such files can be created:

- using a text editor like vim.
- through the GUI

To open the Gmsh GUI

#> gmsh

To open a .geo file using the Gmsh GUI

#> gmsh <filename>.geo

Note: Remember to activate you conda environment

#> conda activate ptetra

э

イロト 不得 トイヨト イヨト

How to write a .geo file?

Use vim/vi/nano or any of your favorite text editor to create a HelloWorld.geo file.

#> vim HelloWorld.geo

< 回 > < 三 > < 三

How to write a .geo file?

Use vim/vi/nano or any of your favorite text editor to create a HelloWorld.geo file. #> vim HelloWorld.geo

Now, let's make our own first geometry file!

How to define points?

Points are defined as:

Point(id) = {x, y, z, cl};

id: unique id assigned to each element with a specific type x, y, z: coordinates of the specific point

- x, y, 2. coordinates of the specific pe
- cl: mesh element size at this point

How to define points?

Points are defined as:

Point(id) = {x, y, z, cl};

id: unique id assigned to each element with a specific type

x, y, z: coordinates of the specific point

cl: mesh element size at this point

Example

Point(1) = {0, 0, 0, 0.1};

7/23

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

How to define points?

Points are defined as:

Point(id) = {x, y, z, cl};

id: unique id assigned to each element with a specific type

x, y, z: coordinates of the specific point

cl: mesh element size at this point

Example

Point(1) = {0, 0, 0, 0.1};

Now, let's see it in action!

Example of a .geo file with 8 points	
Point (1) = {0, 0, 0, 0.1};	
Point (2) = {1, 0, 0, 0.1};	
Point (3) = {0, 1, 0, 0.1};	
Point (4) = {0, 0, 1, 0.1};	
Point (5) = {0, 1, 1, 0.1};	
Point (6) = {1, 0, 1, 0.1};	
Point (7) = {1, 1, 0, 0.1};	
Point (8) = {1, 1, 1, 0.1};	

イロト 不良 とくほ とくほう

э

How to define lines?

Points are defined as:

Line(id) = {start, end};

id: unique id assigned to each element with a specific type

start, end: start and end points of a line

How to define lines?

Points are defined as:

Line(id) = {start, end};

id: unique id assigned to each element with a specific type

start, end: start and end points of a line

Example

Point (1)	=	{0,	Ο,	Ο,	0.1};
Point(2)	=	{1,	Ο,	Ο,	0.1};
Line (1) =	= {	1, 2	2};		

くぼう くほう くほう

How to define lines?

Points are defined as:

Line(id) = {start, end};

id: unique id assigned to each element with a specific type

start, end: start and end points of a line

Example

Point(1)	=	{0,	Ο,	Ο,	0.1};
Point(2)	=	{1,	Ο,	Ο,	0.1};
Line (1) =	= {	1, 1	2};		

Example: Eight points connected via lines (Cube)

```
Point (1) = \{0, 0, 0, 0.1\};
Point(2) = \{1, 0, 0, 0.1\};
Point (3) = \{0, 1, 0, 0.1\};
Point (4) = \{0, 0, 1, 0.1\};
Point (5) = \{0, 1, 1, 0.1\};
Point (6) = \{1, 0, 1, 0.1\};
Point(7) = \{1, 1, 0, 0.1\};
Point (8) = \{1, 1, 1, 0.1\};
Line(1) = \{5, 3\};
Line(2) = \{3, 7\};
Line(3) = \{7, 8\};
Line(4) = \{8, 5\}:
Line(5) = \{4, 1\};
Line(6) = \{1, 2\};
Line(7) = \{2, 6\};
Line(8) = \{6, 4\};
Line(9) = \{5, 4\};
Line(10) = \{8, 6\};
Line(11) = \{7, 2\};
Line(12) = \{3, 1\};
```


How to define circles/circular arc?

Points are defined as:

Circle(id) = {start, center, end}; id: unique id assigned to each element with a specific type start, end: start and end points of an arc center: center of the arc/circle

11/23

How to define circles/circular arc?

Points are defined as:

Circle(id) = {start, center, end};

id: unique id assigned to each element with a specific type

start, end: start and end points of an arc

center: center of the arc/circle

Example

Point (1)	=	{0,	Ο,	Ο,	0.1};
<pre>Point(2)</pre>	=	{1,	Ο,	Ο,	0.1};
<pre>Point(3)</pre>	=	{0,	1,	Ο,	0.1};
Circle(1)	=	{2,	1,	3}	;

• • = • • = •

How to define circles/circular arc?

Points are defined as:

Circle(id) = {start, center, end};

id: unique id assigned to each element with a specific type

start, end: start and end points of an arc

center: center of the arc/circle

Example

Point (1)	=	{0,	Ο,	Ο,	0.1};
<pre>Point(2)</pre>	=	{1,	Ο,	Ο,	0.1};
<pre>Point(3)</pre>	=	{0,	1,	Ο,	0.1};
Circle(1)	=	{2,	1,	3}	;

Now, let's see it in action!

Mesh generation with Gmsh

э.

PTetra Workshop Directory

PTetraWorkshop

```
BLAS-3.10.0
 Geometry
 _____cylinder_0.5R_5L.geo .....base .geo file for cylinder case
 __msh2topo.dat
 PTetra.zip
 PTetra
 README.md
 environment.yml
 funcs.py
__plot.py
```


イロト 不得 トイヨト イヨト

э

Setting up geometry parameters

Open sphere_0.5R.geo using any text editor.
#>vim sphere_0.5R.geo

13/23

Setting up geometry parameters

Open sphere_0.5R.geo using any text editor. #>**vim** sphere_0.5R.geo

```
// STEP 1: SET VARIABLES
debye = 0.00690; // Electron debye length for n=1ell and T=1000
r = 0.5*debye; // Inner radius
R = TBD; // Outer radius
Res = TBD; // Resolution on outer boundary
res = TBD; // Resolution on inner boundary
```


イロン イボン イヨン イヨン 三日

Deciding the system length and local grid resolution

```
// STEP 1: SET VARIABLES
```

```
debye = 0.00690; // Electron debye length for n=1e11 and T=1000
```

r = 0.5*debye; // Inner radius

- R = TBD; // Outer radius How to decide such a number??
- Res = TBD; // Resolution on outer boundary

res = TBD; // Resolution on inner boundary

Answer: There is no simple rule. But, the best practice is to consider the system length so big that ensures the E-field due to the object is zero at the boundary (Dirichlet Boundary).

Deciding the system length and local grid resolution

// STEP 1: SET VARIABLES

debye = 0.00690; // Electron debye length for n=1e11 and T=1000

r = 0.5*debye; // Inner radius

R = r+10*debye; // Outer radius How to decide such a number??

Res = TBD; // Resolution on outer boundary

res = TBD; // Resolution on inner boundary

Answer: There is no simple rule. But, the best practice is to consider the system length so big that ensures the E-field due to the object is zero at the boundary (Dirichlet Boundary).

Deciding the system length and local grid resolution

```
// STEP 1: SET VARIABLES
debye = 0.00690; // Electron debye length for n=1e11 and T=1000
r = 0.5*debye; // Inner radius
R = r+10*debye; // Outer radius
What about the local grid resolution??
Res = TBD; // Resolution on outer boundary
res = TBD; // Resolution on inner boundary
```

Answer: The well accepted criterion for PIC simulations in Cartesian meshes: $\Delta x \ll 3\lambda_D$. For unstructured mesh, Δx becomes the cell diameter (the largest edge-length of a tetrahedron). The central idea of such is to avoid finite grid instabilities in PIC simulations.

Deciding the system length and local grid resolution

```
// STEP 1: SET VARIABLES
debye = 0.00690; // Electron debye length for n=1e11 and T=1000
r = 0.5*debye; // Inner radius
R = r+10*debye; // Outer radius
What about the local grid resolution??
Res = 1.5*debye; // Resolution on outer boundary
res = r/5; // Resolution on inner boundary
```

Answer: The well accepted criterion for PIC simulations in Cartesian meshes: $\Delta x \ll 3\lambda_D$. For unstructured mesh, Δx becomes the cell diameter (the largest edge-length of a tetrahedron). The central idea of such is to avoid finite grid instabilities in PIC simulations.

Building geometry **Gmsh** GUI

#>gmsh sphere_0.5R.geo

Building geometry Gmsh GUI

#>gmsh sphere_0.5R.geo

Now, let's move to the live session

Few useful things of **Gmsh** GUI

```
Made a mistake?? Go to the left panel
```

```
Modules

Geometry

Elementary entities

Physical groups

Reload script

Remove last script command

Edit script.....

Mesh

Solver
```


16/23

A (10) × (10) × (10)

Few useful things of **Gmsh** GUI

```
Made a mistake?? Go to the left panel
```

```
Modules

Geometry

Elementary entities

Physical groups

Reload script

Remove last script command

Edit script.....

Mesh

Solver
```


16/23

A (1) > A (2) > A

Few useful things of **Gmsh** GUI

```
Made a mistake?? Go to the left panel
```

```
Modules

Geometry

Elementary entities

Physical groups

Reload script

Remove last script command

Edit script.....

Mesh

Solver
```


16/23

A (10) × (10) × (10)

To export/save the Mesh using Gmsh GUI

Go to the **Tools** menu on the top left corner and click on **Options**. Then click on Mesh on the left and open **Advanced** tab. Check the box named Optimize quality of tetrahedra with Netgen. Remember to click on Save Options as Defaults before closing **Gmsh**.

🗯 Gmsh	File	Tools	Window	Help	
		Options	5	 ራን <mark></mark>	
- Modules		Plugins		☆業U	
 → Geometry → Mesh > Oshuar 		Visibilit	Ġ₩V		
		Clipping	☆ ℋ C		
- Solver		Manipu	lator	☆₩M	
		Statisti	光		
		Messag	je Console	жL	

• • •	Options - Mesh						
General Geometry Mesh	General Advanced Visibility Aspect Color						
Solver Post-pro	Compute element sizes using point values Compute element sizes using parametric point values Compute element sizes from currenture						
	 Extend element sizes from boundary Optimize quality of tetrahedra 						
	✓ Optimize quality of tetrahedra with Netgen						
	Optimize high-order meshes						

Steps to generate Mesh using **Gmsh** GUI Go to the left panel and click on Mesh Modules Geometry Mesh Define _ 1D 2D To generate 2D Mesh. 3D To generate 3D Mesh. Inspect Save Solver

18/23

Steps to generate Mesh using **Gmsh** GUI Go to the left panel and click on Mesh Modules Geometry Mesh Define _ 1D 2D To generate 2D Mesh. 3D Inspect Save Solver

Understanding the quality of Meshes

Go to the Tools menu on the top left corner and click on Statistics.

Image: A mathematical stress of the stress o

19/23

э

Statistics						
Geometry Mesh Post-processing						
3659	Nodes					
13	Points					
228	Lines					
2362	Triangles					
0	Quadrangle	s				
18108	Tetrahedra					
0	Hexahedra					
0	Prisms					
0	Pyramids					
0	Trihedra					
0.00421802	Time for 1D	mesh				
0.0758061	Time for 2D	mesh				
0.251003	Time for 3D	mesh				
0.8736 (0.4314->0.99	SICN Plot X-Y 3D					
0.8509 (0.3444->0.99	Gamma	Plot	X-Y	3D		
0.8911 (0.4623->0.99	9 SIGE Plot X-Y 3D					
Compute statistics	Compute statistics for visible entities only					
Memory usage: 149.65	i2Mb		Updat	e ⁄=		

Understanding the quality of Meshes

Go to the Tools menu on the top left corner and click on Statistics.

Understanding the quality of Meshes

Go to the Tools menu on the top left corner and click on Statistics.

► < ☐ ► < ⊇ ► < □</p>
PTetra Workshop

19/23

To export/save the Mesh using **Gmsh** GUI

Go to the File menu on the top left corner and click on export. The default save as option should be "Guess from Extension (*.*)." Use ".msh" extension and choose Version 2 ASCII when prompts to save.

Edit msh2topo.dat

#>vim msh2topo.dat
Replace the .msh filename.
\$begin
nfields=0
sphere.msh
\$end

Run msh2topo

#>./msh2topo

Rename msh2topo.out

#>mv msh2topo.out object.topo

э

Edit msh2topo.dat

#>vim msh2topo.dat
Replace the .msh filename.
\$begin
nfields=0

sphere.msh

\$end

Run msh2topo

#>./msh2topo

Rename msh2topo.out

#>mv msh2topo.out object.topo

э

Stanford Bunny

Dassault Falcon Aircraft

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 PTetra Workshop

э

Thank you

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 PTetra Workshop

23/23

э